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J. Phys. A: Gen. Phys., Vol. 5, January 1972. Printed in Great Britain 

Asymptotic behaviour of the chain molecule distribution function 

s DVORAK 
Tesla Rotnov, RoZnov pod Radhoittm, Czechoslovakia 

MS received 9 July 1971 

Abstract. An asymptotic expansion for the distribution density W ,  of the length h of a 
freely jointed polymer chain neglecting volume effects is derived up to order Z-’  ; Z -  1 is 
the number of chain bonds. The derivation is performed on the basis of the exact 
Chandrasekhar form of this distribution. The relationship between the asymptotic expansion 
and the original and amended Langevin distribution has been found as well as the values of 
these distributions for h = 0. These values lead in turn to a better agreement of the 
approximations with the exact distribution than do the values determined from normalizing 
conditions. Further, the relationship of asymptotics to the gaussian distribution is shown 
and the range of its applicability is determined. In this way the topic of the exact distribution 
and its approximations is completed. 

The asymptotics were further compared with the exact distribution and its approxi- 
mations numerically. As a result the zero order asymptotics were shown to be a very close 
and uniform approximation for all h including very small values of Z. The agreement of 
the first order asymptotics with the exact distribution is almost complete (to several decimal 
places even for small Z). Hence the asymptotics can replace various approximations 
mainly in the range of considerable chain lengths. 

1. Introduction 

The exact form of distribution density W, (ED) for the length of a polymer chain has been 
derived by Chandrasekhar (1943) for the model of a freely jointed chain. This derivation 
neglects volume effects and uses the Markov formula for distribution density for the 
sum of independent random variables. Treloar (1946) has derived another form of the 
exact distribution with the direct use of some results of random sampling theory (the 
mean value for the sample of a given size from population with uniform distribution 
over [0, 13). The application of these results (eg for thermodynamic function determina- 
tions) is complicated. The first procedure leads to the expression of W, given by the 
improper integral 

whereas the second one gives W, in the form of a finite sum 

where m = 31 -h /bZ)  and [x] designates the entire part of x. Here and in what follows 
Z -  1 is the number of chain bonds, b is the length of each bond and h is the length of 
the chain, that is its end-to-end distance. The relations (1) and (2) are equivalent. 
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86 S DuoFak 

The form (2) is not suitable for applications either ; in fact, by (2) W, is defined 
piecewise, that is, by different analytical expressions in different intervals of h values. 
Therefore, it is significant to find approximations of the exact distribution W, by 
functions of a simpler form. Considerable attention has been paid to this question and 
intensive investigations are still in progress. 

The first such approximation derived is the gaussian distribution (GD). Here W, is 
approximated by function 9,, where 

9 Z ( N  = (=) 3 3’2 exp( -%) 
(3) 

(3) was derived from (1) for h << bZ.  
Using the methods of physical statistics, another approximation of W, was derived 

by Kuhn and Grun (1942). In their work W, is approximated by the so called Langevin 
distribution (LD) YZ, where 

where the parameter p is defined by h/bZ = L(P); L is called the Langevin function, 
L(x)  = coth x- l/x. The value of A ,  which does not result from the original derivation, 
is determined(Vo1kenStejn 1959, Jernigan and Flory 1969)from the normalizingcondition 
for W,, namely 

471 job’ W,(h)h2 dh = 1 ( 5 )  

where W, is replaced by its approximation 9,. 
For the GD as well as the LD various amendments correcting the original approxi- 

mations were derived ; for instance using Treloar’s relation between space and linear 
distributions the following amended form was derived by Jernigan and Flory (1969) 

9 ; ( h )  = 2.rr A* @exp P [ -P- ;)(si j”P)z - 

again A* is determined by the normalizing condition (5) for 9;. The relations of the 
exact distribution and its cited approximations may thus be represented by the following 
diagram : 

gaussian distribution g2 --- gaussian distribution 
corrected by power series (CGD) 

’.. 
Exact distribution (ED) ... / (‘”9 

‘A Langevin distribution Y2 ---+ amended Langevin 
(LD) distribution ~ ’ ; ( A L D ) .  

The connection between ED and LD does not follow from the derivation of the latter ; 
hence it is marked by a dotted line. 

Here the approximation of W, is approached from another point of view. Starting 
from the exact integral form (1) we will determine the asymptotics of W, for large Z 
and show their relation to GD, LD and also ALD. This procedure which is an extension 
of procedure described by Dvofak (1963) also makes it possible to determine the values 
of A and A* which lead to a better approximation of ED than do the values determined 
from normalizing conditions. Further, the validity range of each approximation is 
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determined ; especially, the validity range of GD is determined precisely. The relationship 
diagram is changed in this approach and looks as follows : 

gaussian distribution gaussian 
corrected by power - distribution 

main term / series (CGD) (GD) 
Exact distribution - asymptotics - of asymptotics 

(ED) (4 (MTA) L a m e n d e d  Langevin Langevin 
distribution (ALD) - distribution (LD). 

2. Asymptotics of W,(h) 

As described in the introduction, the basis of the following considerations is the 
asymptotics of W, for Z -, CO. To derive this, let Z be a large number and h < bZ 
arbitrary, but fixed. From (1) substituting - i A  for 1 we find 

where x = h/b. From this we obtain further 

i J i m  Ae-Ax (sif1) '  - di. 
W'(h) = -- 

4n2bZh -iaa 

The integral in the latter relation is of the same value as the integral of the same function 
taken along the line 1 = p+ ir, - CO < T < CO. For the present p is an arbitrary positive 
number. Indeed, by integration along the rectangle C with vertices - iR, iR, /? + iR, p - iR 
(figure 1) we have according to Cauchy's theorem 

(7) 

8 +IR 

-eh 

3- iR 

Figure 1. Integration path C.  

However, it is easy to find the following estimation : 

Therefore for arbitrary fixed p and fixed Z > 1 and R --* CO this integral vanishes. 
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The same holds for Jc,. The integrated function is everywhere 

F ( i ,  x) = 1 exp( -i.x)(sinh A/,I)’. 
Therefore we can write 

s inh i  . i 
W,(h) = -- A exp( - Ax)( T) d,, = -- 4rc2b2h 

p + i s  

x 1 A expf(A, Z) d i  
p i x  

where f ( A ,  Z) = - A x  + Z lg(sinh A / i ) .  Defining now f i  by term 

1 
- L(p) = coth p--  h _ -  

bZ B 
conditions?f(i, Z)/i?Ali=p = Oand Im f ( A ,  Z) = constant hold true in theneighbourhood 
of point p on the line 1 = p+iz. Hence p is the saddle point of surface w = Ref(]+, 2). 
Therefore, integrating along the line E. = p+ ir, which is the steepest descent line in the 
neighbourhood of p, one can find the asymptotics of W,. At this point let us expand 
f ( A ,  Z) at the point i = p + iz to the power series with centre 8, that is 

where L,  = L(”)(p) is the v fold derivative of the Langevin function at point p. Then 

Because h/bZ = L(p) it is obvious that L, depends implicitly on Z. From the expansion 
of L(p) in the neighbourhood of zero (which is convergent for p < n) 

and from the inversion function expansion 

it follows for p -+ 0 
for odd v 

for even V. 
L y p )  = 

Therefore in the T power expansion of exp(Zr(z)) which has to be performed in (8) 
for the determination of asymptotics it is sufficient to leave only the terms which contain 
after integration Z-’, Z-2 , . . . , Z - k  explicitly, when one wishes to find the asymptotics 
to the order of ZWk- l .  In (8) we have after expansion 

exp(-+ZL,T’)(p+ir) 1 sinhp 
W,(h) = - 4n2b2h 

x(1+Zr(z)+$Z2r2(t)+ . . . )dt .  
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Substituting the power series for r(t), rZ(z), . . . and integrating with the use of 
f n n 

we find the following asymptotical expansion for W, 

or introducing h partially 

1 1 
W,(h) = - 

Here C, and C, are functions of P ;  it holds that 

The asymptotics of W, were evaluated for various Z ;  results have been compared 
with ED and its approximations. The following statements hold true : 

(i) the main term of asymptotics (MTA) and GD have the same value for h = 0;  
(ii) in the neighbourhood of h = 0 GD is less than MTA and GD is a better approxi- 

mation here ; 
(iii) the MTA provides a uniform approximation of ED in the whole extension range 

of the chain. In the range of small extensions MTA is a better approximation than 
9, and 9; (their values being higher) as well as in the range of large extensions 
(the values of LZ’z and 2’; are on the contrary lower); 

(iv) first order asymptotics provide a very accurate approximation over the whole 
extension range. Agreement is to several decimal places even for small Z ;  

(v) second order asymptotics give practically complete agreement with ED over the 
whole extension range. 

In applications, the MTA is of major importance (especially for a good approximation 
in the large extension region) and also the first order asymptotics. The second order 
correction is too complicated for practical use. 

The approximations derived here (MTA and first order asymptotics ~ l )  are not 
normalized. When one wishes to use them as density distribution functions (DDF) they 
are to be normalized in agreement with (5). The shift due to normalization makes the 
approximations provided by MTA or first order asymptotics still closer to the exact DDF. 
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3. Relation between asymptotics and WAh) approximations 

From the asymptotic expansion derived in (10) or (11) it is easy to find the relation of 
asymptotics to the amended Langevin distribution Yg, given by (6). The difference 
between them consists in considering Fg(/?) = (2nZL’(b))- l i 2  as a normalization con- 
stant in 9; whereas it is actually a function of b, namely 

In the original Langevin distribution the normalization constant replaces 

making the approximation of W, even worse. From the 9, derivation it follows : 

Y z ( h )  = Yz(0) exp ( -p -  :)(sin; __ P ) Z  . 

Because the value of Yz(0) does not follow from this procedure, it is determined from 
normalization of 9,. Similarly A* is connected with Yz(0). Having in mind that the 
asymptotics are a closer approximation of W, in the neighbourhood of zero than Yz 
or 2’; one can see by taking the initial value of these distributions to be equal to the 
value given by asymptotics, one arrives at the approximation, which is better than the 
one provided by normalization. 

This leads to 

for the original and 

for the amended Langevin distribution. 
MTA also leads simply to GD corrected by power series. For MTA it holds that 

and further 
sinh p P 

lg( -ii-) = Io L(r) dz = PL(P) - 1 zL’(r) dr. 
0 

Introducing p = L(r) into the foregoing relation leads to 

where L‘-” is the inverse Langevin function. With the use of expansion (9) and 
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L(D) = h/bZ after integration we get 

99 h T =  _ _  - _- - _ _  - - 
2 ' (  bZ ' ) '  290ibhZ)4 350(bZ) "" 

Further 

passing to chain length h. Both expansions in h are convergent for h < bZ. Hence 
MTA may be rewritten as follows : 

dz(h)  = ( - 2rcZb2 )3'2exp( -%){ 2Zb2 I+!(")'+ 2 bZ . . .}  

that is 

. . . ) .  (13) + . . .] exp( -- 9 h4 99 -- h6 d z ( h )  = %,(h){ 1 +'( 2 bZ 20 b4Z3 350 b6Z5 

From (13) it is obvious that GD is obtained from dz(h)  by omitting the last two factors 
there. The deviations of GD from asymptotics or from ED then result because of the 
omitted terms in (13). The product of these terms equals 1 for h = 0, then becomes 
greater than 1 and again decreases to 1 and further, it is even lower than 1. From this 
it follows immediately that up to certain value h = h,  GD runs below asymptotics dz 
and above it for h > h,. The value h, may well be considered as upper limit of GD 
applicability, because for h > h,  the'difference between GD and ED becomes significant. 
For h -= h ,  GD lies between ED and MTA providing the best approximation in this 
range with the exception of the first and second order asymptotics. h, may be estimated 
easily. Owing to the fact that h,  lies in a small-extension range, it may be determined 
from the term 

1 + ($hi/b2Z2) 
20 b4Z3 . ") e 1 +(&h:/b4Z3) 

whence it follows : 

h, N bZ' '2 , , / y ,  

Therefore the range of extension hjbZ where GD may be used is getting smaller with 
increasing Z in accordance with the term 

The result (14) is more precise than the usually mentioned condition h << bZ for GD 
applicability. 

4. Numerical evaluation 

The comparison of known and newly derived approximations of W, is given for Z = 3 
by figure 2 and for Z = 6 by figure 3. The results for Z = 8 and 2 = 100 are given by 



92 S Dvo?ak 

tables 1, 2 .and 3 for the distributions mentioned above. The values of the first order 
asymptotic are given in table form also for 2 = 200, 400 and 800 together with exact 
values of W,(h). 

I 

h/bZ 

Figure 2. Exact distribution and its approximations for Z = 3 

Table 1. Freely jointed chain DDF for Z = 8 

Gaussian Exact First order 
h;b DDF MTA DDF asymptotics LD ALII 

0.0 
0.2 
0.4 
0.6 
0.8 
I .o 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 
6.5 
7.0 
7.1 
7.2 
7.3 
7.4 
7.5 
7.6 
7.7 
7.8 
7.9 
8.0 

1,458 1-02 
1.4472-02 
1.415&02 
1.3629-02 
1.2932-02 
1.208742 
9.5622-03 
6.887403 
4.5 169-03 
2,6972-03 
1.4664-03 
7,2593-04 
3.2720-04 
1.3428-04 
5.01 78-05 
1.7072-05 
5.2887-06 
1.49 18-06 
1 1452-06 
8.7586-07 
6.6736-07 
5,0659-07 
3.83 1 1-07 
2.8865-07 
2,1666-07 
1.6202-07 
1.2076-07 
8.9587-08 

1,458 1-02 
1,4485-02 
1.420342 
1.374342 
I .3 1 2 4 0 2  
1,2366-02 
1.0046-02 
7.4848-03 
5,093403 
3,148643 
1,7546-03 
8,721 3-04 
3,8077-04 
1,4273-04 
4.4293-05 
1,0666-05 
1.7485-06 
1.4245-07 
7,4638-08 
3,630548 
1,6O7(M8 
6.2869-09 
2.0774-09 
5.3741-10 
9.4406-1 1 
8.1 8 18-1 2 
1.2622-13 
0 

1.3263-02 
1.3 175-02 
1.2914-02 
1.249142 
1,1923-02 
1.1229-02 
9,1089-03 
6.7696-03 
4,5914-03 
2,8267-03 
1.5668-03 
7,7367-04 
3.3 52 5 -04 
1.245 1-04 
3.8309-05 
9,2104-06 
1.5 1 3 1-06 
1,2335-07 
6,4632-08 
3.143848 
1.39 1 6 4 8  
54441-09 
1,798949 
4.6537-1 0 
8,1749-1 1 
7.0849-1 2 
1.0930- 13 
0 

1,321402 
1.3 127-02 
1.286842 
1,2449-02 
1,188342 
1.1 192-02 
9.0780-03 
6,7467-03 
4,576403 
2.8 174-03 
1.5622-03 
7.717604 
3,3461-04 
1.2450-04 
3.8378-05 
9.2078-06 
1.5100-06 
1.23 15-07 
6 . 4 5 3 M 8  
3.1 389-08 
1,389448 
5.4356-09 
1,796 1-09 
4,646410 
8,1622-1 1 
7,0738-1 2 
10852 13 
0 

1,6063-02 
1,5943-02 
I ,5588-02 
1.501 3-02 
1,424242 
1,3305-02 
1.0486-02 
7.4774-03 
4.7972-03 
2.7477-03 
1,3897-03 
6.1 105-04 
2.2839-04 
7.01 5 4 0 5  
1.6779-05 
2.846406 
2.856847 
1.114848 
4,799249 
1.8705-09 
6.4270-10 
1,8726-10 
4,3550-1 1 
7.3065-1 2 
7.3 147-1 3 
2.8541 - 14 
1 . 1  148-16 
0 

1.4866-02 
1,476&02 
1.4448--02 
1,3941-02 
1,3260-02 
1.2430-02 
9,916543 
7,1957--03 
4,7263-03 
2.7907-03 
1,467 1-03 
6.7736-04 
2.69 3 8-04 
8.962 1-05 
2,3819-05 
4.6701-06 
5,7832-07 
3'1444--08 
1.482848 
6.4 1 1 1-09 
2,4831-09 
8,3265-10 
2.2928-10 
4,7451-1 1 
6.251 6-1 2 
3.61 2&13 
2.7862-1 5 
0 
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0.02 

- 
I , 
I 2 3 

h/b 

Figure 3. Exact distribution and its approximations for Z = 6. 

Table 2. Freely jointed chain DDF for Z = 100 

Gaussian Exact First order 
hlb DDF MTA DDF asymptotic LD ALD 

0.0 
0.5 
1 .o 
2.0 
3.0 
6.0 

10.0 
15.0 
20.0 
25.0 
30.0 
35.0 
40.0 
45.0 
50.0 
55.0 
60.0 
65.0 
70.0 
75.0 
80.0 
85.0 

3.2992-04 
3.2869-04 
3.250144 
3.107 1 4 4  
2.8 8 2 6 4 4  
1.922644 
7.361645 
1.1 289-05 
8.1780-07 
2.798348 
4.5231-10 
3.4534-12 
1,2455-1 4 
2.12 19-1 7 
1,7075-20 
6.4908-24 
1,165427 
9,8855-32 
3,9607-36 
7.495841 
6 .701W6 
24297-51 

3.2992-04 
3.28 70-04 
3.250644 
3.1089W.l 
2.886404 
1.93 19-04 
7.4398-05 
1.1 4 15-05 
8.0785-07 
2.5698-08 
3.5472-10 
2,0275-1 2 
4.51 17-1 5 
3.6049-18 
9.2 9 O@ 2 2 
6,6827-26 
1.0987-30 
3.101 6-36 
9,782343 
1,7375-50 
5.3 168-60 
24620-72 

3.274544 
3.2624-04 
3,2263-04 
3.0857-04 
2.8648-04 
1.9 174-04 
7.3837-05 
1.132945 
8,016147 
2,549548 
3,5187-10 
2.01 07-1 2 
4.4732-15 
3,5730-18 
9,2046-22 
6,6187-26 
1,0877-30 
3.0692-36 
9.677 1 4 3  
1.7 185-50 
5.2587-60 
2.8310-72 

3,2745-04 
3,262344 
3.226244 
3.085&04 
2.8647-04 
1.9 1 7 4 4 4  
7.383645 
1.1 328-05 
8,0160-07 
2,5495-08 
3.5186-10 
2.0107-1 2 
4,4732-1 5 
3,5729-18 
9,2045-22 
6.6186-26 
1,0877-30 
3.0692-36 
9,677143 
1.71 85-50 
5.2586-60 
2.83 10-72 

3.3 24 1 4 4  
3.3 1 17-04 
3.274644 
3.1305-04 
2,9042-04 
1 , 9 3 6 M 4  
7,383645 
1.1 114-05 
7 . 6 5 3 M 7  
2.347948 
3.0958- 10 
1,6721-12 
3.4732-15 
2,5536-18 
5,9528-22 
3.7933-26 
5.38 18-3 1 
1.2671-36 
3.186443 
4.2403-51 
8.895 1-61 
24654-73 

3.3042-04 
3.29 1 9 4 4  
3,2552-04 
3.1 1 2 5 4 4  
23884-04 
1.9286-04 
7.383845 
1.120045 
7,7968-07 
2,426848 
3.2589-10 
1.8004-1 2 
3,8438-15 
2.9213-1 8 
7.0877-22 
4,7403-26 
7.1343-3 1 
1.8070-36 
4.982443 
1.4726-5 1 
14412-60 
7,446 1-73 

5. Conclusions 

The asymptotics of W, make it possible to understand the character and the course of 
ED approximations and to determine their mutual relations and their tie-ups to ED. 
In this way the problem of W, approximations has been solved completely ; especially, 
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the relation of MTA to GD has been found, which leads directly to power series correction 
of GD and to the exact determination of GD validity range. 

The MTA term derived here is not more complex than the Langevin approximations 
Yz ,Y$ .  MTA itself reproduces correctly the course of W, over the whole extension 
range ; especially, it gives good agreement for large extensions,'where the other approxi- 
mations deviate considerably. The first order asymptotics which are already very 
close to W, can be applied easily too. The second order asymptotics are less suitable 
because of their complicated forms. Moreover, the accuracy provided by the first order 
asymptotics is quite sufficient in all applications. All asymptotic approximations may be 
used even for the smallest Z (Z 2 3). 

Table 3. The exact distribution and first order asymptotics for Z = 200, 400 and 800 (the 
values not written out are of order or less). 

z = 200 Z = 400 Z = 800 
h ' b  

ED 41 ED A I  E 1) * I  

0 
1 
- 
3 
4 
5 

10 
20 
30 
40 
50 
60 
80 

100 
120 
140 
160 
180 
200 
220 
240 
260 
280 
300 

1 16208-4 
1.15344-4 
1,12790-4 
1.08659-4 
1.031274 
9.64269-5 
5,5068 1-5 
5.82057-6 
1.34439-7 
6,550241 0 
6,39186-13 
1,16326-16 
1,65957-26 
5.8547740 
6,25803-58 

1. I 62064 
1,153434 
1.1 279&4 
1.08658-4 
1.03 127-4 
9.64265-5 
5,50678-5 
5,820546 
1.34439-7 
6,55021-10 
6,39183-1 3 
1.1 6326- 16 
1.65956-26 
5,8547640 
6,25802-58 

4.1 1630-5 
4.10094-5 
4,05517-5 
3.98003-5 
3.87716-5 
3.7488&5 
2.831565 
9,20887-6 
1.4 1239-6 
1.01724-7 
3.41977-9 
5.32416-1 1 
1,22986-15 
1,12961-21 
3.57431-29 
3.2 l90&38 
6.4 1939-49 
2,038 18-6 I 

4,11582-5 
4.1 01 2&5 
4.055 17-5 
3,98003-5 
3,87716-5 
3,74879-5 
2.831 5 4 5  
9.20885-6 
1.41 239-6 
1,017247 
3.41976-9 
5.32416-1 1 
1.22987-1 5 
1.1 296 1-2 1 
3.57430-29 
3.2 1900-38 
6.4193949 
2.038 18-6 1 

1,45670-5 
1.45397-5 
1.44583-5 
1.43 23 5- 5 
1.41370-5 
1,39007-5 
1.2079 1-5 
6 . 8 8 6 6 6  
2,698 39-6 
7,26337-7 
1.34206-7 
1.70057-8 
8,76308-1 1 
9.8 1925-14 
2.35505-17 
1.18542-2 1 
1,22276-26 
2,51257-32 
9.94937-39 
7,3057346 
9.5 1582-54 
2.08931-62 
7.29395-72 

1.45623-5 
1.45377-5 
1.44584-5 
1.43237-5 
I .4 1369- 5 
1.39007-5 
1,20792-5 
6.886446 
2.69839-6 
7,26337-7 
1.34206-7 
1.70057-8 
8.76308-1 1 
9.8 1925-14 
2,35505-17 
I 18542-21 
1.22277-26 
2.51257732 
9.94937-39 
7.30572-46 
9.5 158 1-54 
2.0893 1-62 
7.29396-72 
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